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The steady-state inviscid and nearly inviscid Burgers’ equations and the Euler equations for 
steady-state shocked flow in a quasi-l-dimensional nozzle are discretized by cell-centered finite 
differences on the cells of an arbitrarily spaced grid. Inviscid and viscous terms are 
approximated to second order by 2-point schemes and 4-point schemes, respectively. There 
results an overdetermined system of nonlinear algebraic equations. This system is solved by 
a mathematical-programming procedure that minimizes a weighted sum of the absolute values 
of the residuals (the I, norm of the vector of residuals). In this algorithm, which is nonconser- 
vative, no upwinding, switches, arbitrary constants, or heuristic quantities are used. The artifi- 
cial viscosity used to solve the inviscid Burgers’ equation is small (- iO-“a”). No artiticial 
viscosity of any kind is used for the Euler equations. The numerical solutions of both the 
viscous and the inviscid problems are accurate and nonoscillatory on grids with abrupt 
refinements in mesh length by factors as high as 10“. Shocks are invariably captured in one 
cell and this cell is rarely more than three cells away from the cell in which the physical skock 
occurs. c 1990 Academic Press, Inc. 

1. I~~R00ucTioN 

Solution of the steady-state Burgers’ equation on equally spaced grids by mat 
matical programming has been investigated in [S]. In the present paper, mathe- 
matical programming is used to solve Burgers’ equation and the Euler equations for 
quasi-l-dimensional flows on equally spaced grids and on grids with abru 
changes in mesh length by factors as high as 104. All of the computational results 
presented in this paper were obtained in double-precision arithmetic on a 
IBM 370. 

A summary of the results of this paper was presented at the ‘“11th International 
Conference on Numerical Methods in Fluid Dynamics, Williamsburg, ~i~gi~~a~ 
June 266July I, 1988” [6]. 

2. BURGERS’ EQUATION 

We consider first the steady-state inviscid Burgers’ equation 
(Ix’)’ = 0 on (0, 1) (mi) 
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2 JOHN E. LAVERY 

with the boundary conditions 

40) =&To> u(l)=81 (go fg1). (2.lb) 

The physically relevant solution of (2.1) is the pointwise limit as E -+ 0 + of the 
solution of the singularly perturbed problem 

- Ed + ( u2)’ = 0 on (0, 1) (2.2a) 

40) =go, 41) =I?,. (2.2b) 

For the boundary conditions 

go= 1, g,=o, (2.3) 

the solution of the viscous problem (2.2) is 

U(X) = c tanh(c( 1 - X)/E) (2.4) 

for c such that c tanh(c/s) = 1 (boundary layer at x = l- for small E). For boundary 
conditions (2.3), the physically relevant solution of the inviscid problem (2.1) is 

1, 
u(x)= o L 

O<x<l, 
x= 1. G-5) 

Let xi, i = 0, 1, . . . . II, be the node points, not necessarily equally spaced, of a grid on 
co, 11: 

0=x,<x,<x,< ... <x,P1<x,=l. (2.6) 

Discretize Eq. (2.2a) on each cell (xi, xi+ 1) using a 4-point finite-difference scheme 
involving u~-~, ui, ui+r, and ui+2 for the viscous term --Eu” and a 2-point dif- 
ference scheme involving only ui and ui+ 1 for the inviscid term (u2)‘, both schemes 
being of, second order with respect to maximum cell width at the midpoint 
(xi + xi+ ,)/2 of the cell. The resulting finite-difference approximations of (2.2a) on 
the first cell (x0, x,), on the interior cells (xi, xi+ 1), i = 1, 2, . . . . n - 2, and on the last 
cell (x, ~ 1, x,) are, respectively, 

E 

3x, + x1 -2x, -2x, 
~~o-~~~~~o-~2~~~o-~~~go 

x0+3x,-2x,-2x, 

+ (Xl -x0)(x1 -x2)(x1 -x3) u1 
x,+x,--x, 

+ u:-g; ~ = 0, Xl--X0 (2.7a) 
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f 
-2Xj_l+Xi+3Xj+l-2Xj+, 

(Xi+ 1 -xi-~I)(xi+l-xI)(x,+I-xi+*) 
%i+1 

--2x,-1+xj$xi+! 
+(xi+~-xj-~)(xi+~-xj)(Xj+~~xj+l)ui+2, 

E (2.k) 

For equally spaced xi, Eqs. (2.7) reduce to Eqs. (2.1) of [5]. In particular, Eq, (2.7 
reduces to the more familiar form 

& 
-“i-l+Ui+Ui+l-%j+2 %f+l 

+ 
- Ll; 

2h2 
= 

h cl 
(2.8) 

(h = xi+ l -xi). 

Equations (2.7) are an overdetermined system of n e 
unknowns ui, i= I, 2, . . . . n - 1. Why this system shsuld be s 
rather than by a I, (least-square) procedure is discussed in 
solving system (2.7) consists in finding the ui, i= 1,2, . . . . n - 4 that mini 

C (xi+l-xi)/yii~ 
(2.9) 

i=O 

of the absolute values of the residuals ri (left sides) of Eqs. (2.7). In [S], the weig 
(xi+ r - xi) were all equal and were omitted. Sum (2.9) was rni~~rn~z~d by the proce- 
dure used in [S]: system (2.7) (with the equations reweighte by rnu~t~~~i~at~Q~ by 
(xi+ I -xi)) was linearized by Newton’s method, the resulting overdet~~~~e~ 
linear system was solved by the Barrodale-Roberts E, algorithm [I, 2, 3] as 
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implemented in the IMSL (Ed. 9) subroutine RLLAV and these two steps were 
repeated. Convergence was deemed to have occured when the relative I, error 

between the current solution values uy and the values upTe on the previous step 
was less than 0.5 * 10-i’. 

All of the computational results for Burgers’ equation were obtained using the I, 
procedure with a homotopy (continuation procedure) in E. For E = lo-‘, the initial 
guesses for the ui were set equal to 1 -xi. Once convergence for E = 10-l was 
achieved (as determined by the convergence criterion involving (2.10) discussed 
above), the final solution for E = 10-i was used as the initial guess for the solution 
of the problem with E = lo-‘. In general, the solution for E = 10pk+’ was used as 
the initial guess for the solution of the problem with E = 10 pk, k = 2, 3, . . . . 15. The 
results presented in [S] show how well the I, procedure performs on equally spaced 
grids. Additional numerical experiments on equally spaced grids for system (2.7), 
(2.3) with IZ = 4, 8, 16, 32, and 64 cells were performed. These results suggest that 
the estimate O((E/~)~) of [S] for the difference between the numerical solution ui 
and the inviscid solution u = 1 can be sharpened slightly to 0( (s/4/2)“). Here, the 
integer m represents the number of mesh units between the node in question and 
the position of the boundary or interior layer, rounded upwards to the nearest 
integer. The layer here is the boundary layer located at x = 1 -. The results for n = 4 
confirm that the I, procedure produces the correct inviscid solution even on 
extremely coarse grids. The numerical results of [S] and the new numerical results 
mentioned here show that the II procedure not only produces accurate non- 
oscillatory approximations of the solution of the inviscid problem (2.1), (2.3) as 
E + 0 but also produces good approximations of the solutions of the viscous 
problem (2.2), (2.3). Indeed, for all of the results mentioned above, the numerical 
solution ui was within 3 % of the theoretical viscous solution u(xj) in the boundary 
layer and was much closer than that outside the boundary layer. 

While the I1 procedure is known to perform well on equally spaced grids, its per- 
formance on grids with variable spacing remains to be investigated. A particularly 
interesting case is that of achieving boundary-layer resolution by concentrating 
node points near the boundary. With standard methods, node points can be con- 
centrated in the boundary layer only if the grid is gradually stretched. This results 
in having many extra nodes in the inviscid region outside the boundary layer, since 
the stretching factor is usually much less than a factor of 2. If performance of the 
standard methods were not so degraded by abrupt changes in mesh length, one 
would often choose to have a very fine grid in the boundary layer and a coarse grid 
outside the boundary layer with the transition between the two being quite abrupt. 
This would result in savings in storage as well as in the amount of programming 
and CPU time necessary to generate the grid and compute the solution. It is on 
grids of this type that the I, procedure was put to the test. Each grid consisted of 
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two sets of nodes: nodes with coarse equal spacing outside the boundary Iayer at 
x = I - and nodes with tine equal spacing in the boundary layer, the coarse cehs 
being larger than the fine cells by factors as high as IQ”. The f~ll~w~~g gri 
factors of IO’, Y = 1, 2, 3,4, were used: 

7 Large cells each of width 

10 small cells each of width 

Convergence occured for all four grids for E up to and inclu Qet5 in seven or 
fewer Newton iterations for each E. In the boundary layer, fference between 
the numerical solution ui and the inviscid solution I was 
denotes the width of each of the fine cells in the bound ry layer and m denotes 
distance in units of h from x = l- to the node un er consideration, roun 
upwards to the nearest integer (m < 8). Selected ui are compared in Table 1 to the 
values of the viscous solution (2.4) for the most extreme of 
(abrupt refinement in mesh length by a factor of IO4 at x = 7000/ 
cedure not only produces numerical solutions that conver e to the inviscid soEution 

TABLE I 

Comparison of the 1, Solution U, of System (2.7), (2.3) for Grid (2.11) with Y = 4 
(Abrupt Refinement in Mesh Length by a Factor of IO4 in the Boundary Layer) 

with the Solution u(x;) of the Viscous Problem (2.2), (2.3) 

E== lo-' 
ur 0.747244 0.001404 0.001263 QoO1123 0.000!40 

4x,) 0.891625 0.001428 0.001286 0.001143 0.~0143 

E= 10-2 
u, 0.976638 0.010163 0.008131 Q.oolQ16 

4x,) 1.000000 0.014283 0.012855 0.011426 0.001428 

E=10-3 Ui 0.997888 0.095725 0.086228 0.076106 O.OO9614 

u(xJ 1.000000 0.141873 0.127850 0.113775 0.014283 

E=lQ-4 ui 0.999954 0.801083 0.766947 0.725164 0.121880 
4X,) 1.000000 0.891332 0.857952 0.815319 0.141813 

E= 10-5 
u, 1 .OOoOOo 1.000000 1.000000 0.999999 0.813168 

4x,) 1.000000 1.oooooo 1.oooooo 0.891332 

E= 10-6 
uz 1.omoo0 1.oooGoo 1.oooooo 0.982347 

4x,) 1.000000 1.oooooo 1.000000 l.WOQO 

E= lo-’ 
ui 1.000000 1.0000@0 1.000000 1.OOoooo 

4Xi) 1.000000 l.OOOUOO 1.mmo 1.oooooQ 

Mote. The entries in the table are the values of the U, and u(x,). 
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1 but also produces good approximations of the viscous solutions u(x~): the maxi- 
mum relative error ) ui - u(xJl/l u(xJl in the data of Table I is 16%, 29%, 33%, 
14%, 9%, 2%, and 0.2% for E= 10hk, k= 1, 2, 3, 4, 5, 6, 7, respectively. Given the 
extreme abruptness of the change from the coarse cells to the fine cells, this is 
remarkable agreement. Results for grids (2.11) with less abrupt changes in mesh 
length (r = 3,2, 1 for factors of 1000, 100, and 10, respectively) showed even better 
approximation of the viscous solution than that mentioned for r = 4 just above and 
showed analogous convergence to the inviscid solution. 

Abrupt changes in mesh length can arise in practice not only when a relined grid 
is used near a boundary or interior layer but also when grids generated for separate 
parts of a domain meet. The I1 procedure was tested on four grids that simulate this 
situation. Each grid had eight cells with one small cell just to the left of x= 0.5 
sandwiched between three large cells on the left and four large cells on the right. 
The four grids used were 

0.5 - 
3 large cells each of width 

0.125 * lo-’ 
3 

in (0, 0.5 - 0.125 * lO-r), 

1 small cell of width 0.125 * lo-‘in (0.5 -‘0.125 * lo-‘, 0.5) (2.12) 

4 large cells each of width 0.125 in (0.5, l), 

r = 1, 2, 3,4. The widths of the three types of cells in (2.12) are in the ratios 

$* lo’--1: 1: 10’. (2.13) 

Selected results for r = 2, for which the mesh length changes by factors of 132 and 
100 to the left and right, respectively, of the small cell, are presented in Table II. 
These results show that the I, procedure does not yield a particularly good numeri- 

TABLE II 

Comparison of the I, Solution ui of System (2.7), (2.3) for Grid (2.12) 
(Cell Widths in the Ratio 132: 1: 100) with the Solution u(xi) of the Viscous Problem (2.2), (2.3) 

x2 = 0.33250 

E= 10-l u* 1.018740 
UC4 0.999997 

E= 10-z u, 1.000000 
4x,) 1.000000 

&= 1om3 *, 1.000000 
U(Xi) 1.000000 

&= 1o-4 ui 1.oooooo 
4x8) 1 .oooooo 

x3 = 0.49875 

1.180288 
0.999911 

1.000000 
1 .OOOOOo 

1.000000 
1.000000 

1 .OOoOOo 
1.000000 

xq = 0.5 x5 = 0.625 X6 = 0.75 

1.184322 0.648835 0.745356 
0.999909 0.998894 0.986614 

1.000000 0.999996 0.999600 
1.000000 1 .OOOOOo 1 .oooooo 

1.000000 1.000000 0.999996 
1.oooooo 1.000000 1 .ocoooo 

1.000000 1 .oooOOo 1 .oooooo 
1.oooooo 1 .oooooo 1.000000 

Note. The entries in the table are the values of the u, and u(x,). 
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cal solution of the viscous problem with e = 10 ~ ’ but does solve the inviscid 
as E -+O. Convergence occurred for E = 1 -k, k= 1, 2, I.i, 15 

ocedure). At nodes nearest the boundary layer, the 
vergence seen in previous results is observed. Analogous rest&s were 
r = 1 (less abrupt cell-width ratios of 123 : 1: 10). For r = 3,4 (more 
of 1332: 1: 1000 and 13332: 1: 10000, respectively), most of the ui conver 
while one or more of the ui converged to the nonphysical value - 1. All 

s (2.12) were obtained with the homotopy proce 
w, = 1 -xi and E = 10 ~ 1 as described at the beginning of this section. 
mitial guess for Y = 3,4 was ui = 1 and the homotopy went from E = 
of F = IO--‘) to F = 1W” (stepping through powers of IG), the ui all r 

converged back to I as E + 0. 
The results for inviscid and nearly inviscid Burgers’ equations suggest that the i, 

procedure is a good candidate for solving steady-state conservation laws. This topic 
is investigated further in the next section. 

3. EULER EQUATIONS FOR QUASI-ONE- I~NSIONAL FLOW 

Steady quasi-l-dimensional flow of air in a nozzle of length 10 with cross- 
sectional area A(x) can be described by 

on (0, IO), where p is the density, u is the velocity, E = e + (u’/2) is the total energy, 
e is the internal energy, p = (y - 1) ee is the pressure for a perfect gas an 
(al quantities normalized). The area function 

A(x) = 1.398 + 0.347 tanh(O.&x - 4) 

and the boundary conditions 

(3.2) 

p(Q)= 0.502, u(O)= 1.299, e(O)= 1.897, 
(3.3) 

p(lO)=O.776 

of [IO] were used. The four boundary conditions (3.3) yield a s~perso~ic~s~bso~~c 
ow with shock at x = 4.8 16. 
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Let xi, i = 0, 1, . . . . IZ, be the node points of a not necessarily equally spaced grid 
on [0, lo] that satisfies relations (2.6) with x, = 1 replaced by x, = 10. Equations 
(3.1) are discretized on this grid using 2-point finite-difference schemes of 
O((Xi+ 1 -xi)“) centered at the midpoint of the cell (xi, xitl): 

Ai+l Pi+l”f+I-AiPiui’ +Ai+l+AiPi+l-Pi=O 

xi+1 -xi 2 xi+l-xi : 

(3.4a) 

Ai+lUi+l(Pi+lEi+l+~i+l)-AiUi(~iEi+Pi)=O 

xi+1 -xi 

(3.4c) 

(cf. [4, 8, 111). System (3.4) with the boundary conditions (3.3) is an overdeter- 
mined system of 3n equations for the 3n- 1 unknowns pi, (pu),, ei, i= 
1, 2, . ..) n - 1, and (pu),, e,. The 1, strategy for solving this problem is to minimize 
the sum 

n-l 3 

izojFl (xi+l-xi)IyijI~ (3.5) 

where rii is the residual (left side) of thejth of Eqs. (3.4) for a given i (cf. (2.9)). Sum 
(3.5) was minimized by the 1, procedure used in Section 2: system (3.4) with the 
equations reweighted by multiplication by (xi + r -xi) was linearized by Newton’s 
method and the resulting overdetermined linear system was solved by the 
Barrodale-Roberts E, algorithm (IMSL Ed. 9 subroutine RLLAV). Convergence 
was deemed to have occurred when the relative I, error 

n.fl Ip;ur-pp’“I + i In- Ipu)p’“I + i Iey--eyI 

IPp”‘I I(PU)l”‘I i=l leTurl i=l i= 1 
(3.6) 

between the solution values on the current Newton step (superscript “cur”) and the 
solution values on the previous Newton step (superscript “pre”) was less than 
0.5 * 10-l’. No homotopy was used since no artificial viscosity was added to 
Eqs. (3.4). The initial guesses were 

Pi = P(0) for xi < 4.816, Pi= P(l”) for xi > 4.816, 

(pu), = 40) P(0) 40) vx. 
I 

A(xJ I’ 
ei = e(0) Vx,. 

(3.7) 

The choice of initial pi that have a “discontinuity” at the position of the shock in 
the physically relevant solution of (3.1), (3.3), that is, at x=4.816, helps out the 
convergence of the I, procedure. What happens when the initial pi are on a linear 
function connecting the boundary values p(0) and ~(10) (with the initial (pu), and 
ei as in (3.7)) will be discussed later in this section. 
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We first present selected results from numerical experiments done ion equally 
spaced grids with IZ = 4, 8, 16, and 32 cells. Results for II = 64 were also obtaine 
are not presented here. The numerical densities pi are compared to the exac 
sities p(x,) in Table III. (An exact solution of sys (3.1), (3.3) can be calculates 
in implicit form. Newton’s method was used on implicit algebraic equation to 
obtain the i).) As expected, the largest errors occur near the shock at x = 4.816. 

owever, largest error on the coarsest grid, namely, the error at x = 5 for 
the grid with n = 4, is a mere 1.2 % (numerical pi = ~.~24$~622 vs exact p(xi) = 

TABLE III 

Comparison of the I, Solution pz of System (3.4), (3.3) on Equally Spaced Grids 
with the Exact Solution p(x,) of System (3.1), (3.3) 

XZ 

n=4 

Pr 

?l=8 

Pi 

?I=16 

Pt 

n=32 

Pi 

0 0.50200000 
0.3125 
0.6250 
0.9315 
1.2500 
1.5625 
1.8750 
2.1875 

2.5 0.48727452 
2.8125 
3.1250 
3.4375 
3.7500 
4.0625 
4.3750 
4.6875 

5 0.12481622 
5.3125 
5.6250 
5.9375 
6.2500 
6.5625 
6.8750 
7.1875 

7.5 0.77470941 
7.8125 
8.1250 
8.4375 
8.7500 
9.0425 
9.3750 
9.6875 

10 0.77600000 

0.50200000 

0.50010440 

0.48720550 

0.42473478 

0.71953064 

0.76664319 

0.77470626 

0.77584496 

0.77600000 

0.50200000 

0.50!48612 

0.50010343 

0.49644520 

0.48716393 

0.46571636 

0.42410261 

0.36264995 

0.11722244 

0.75160317 

0.76654967 

0.77246467 

0.7747043 1 

0.77553725 

0.77584492 

0.77595828 

0.77600ooO 

0.50200000 
0.50180564 
0.50148608 
0.50096256 
0.50010309 
0.49870454 
0.49644289 
0.49282759 
0.48715ooo 
0.47846351 
0.46565251 
0.44766209 
0.42392164 
0.39488327 
0.36240318 
Q.32955429 
0.71660!80 
0.73735974 
0.35143709 
0.76064976 
0.7665 1889 
0.77019025 
0.71245994 
0.77385278 
0.77470363 
0.77522195 
0.77553716 
0.77572865 
0.71584491 
0.77591547 
0.77595827 
cl77598425 
0.176 

~.~02~~ 
0.50180564 
0.50148606 
0.50096151 
0.5OOlG!9? 
0.49870422 
0.49644204 
0.49282547 

0.47845229 
0.46562992 
0.44762167 
0.42385978 
0.39480465 
0.36232317 
0.32949226 
0.71639225 
0.73724317 
0.75137902 
0.76062347 
0.7665~18I 
0.77018581 
0.71245821 
0.77385212 
0.77470339 
0.77522:%i 
0.71553713 
0.77572864 
0.77584490 
0.71591546 
0.17595827 
0.755 
0.776 
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0.71639225). The rate of decrease of the error as h + 0 at a given x is observed to 
be 0(/Z*), where h=~~+~ -xi. 

The results of Table III indicate that the 1i procedure performs significantly 
better on equally spaced grids than both the tridiagonal shock-fitting algorithm of 
[lo] and the bidiagonal shock-capturing algorithm of [Ill]. In Fig. 4 of [lo], the 
exact density function p(x) and the densities pi computed by the tridiagonal shock- 
fitting algorithm 
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TABLE IVa 

Comparison of the 1, Solution p, of System (3.4); (3.3) on Grid (3.9) 
with the Exact Solution p(x,) of System (3.1) (3.3) 

0 0.50200000 0.50200000 0 

1.6 0.49849216 0.49848625 0.00000591 
3.2 0.46229 173 0.46181430 0.00047743 
4.8 0.32024257 0.31824788 0.00199469 
4.81 0.31925053 0.31721225 0.00197828 
4.82 0.70456939 0.70054954 0.00401985 
4.83 0.70551894 0.70151339 0.00400555 
4.84 0.70645849 0.70246693 0.00399 156 
4.85 0.70738815 0.70341025 0.00397790 
4.86 0.70830798 0.70434344 0.00396454 
4.87 0.70921808 0.70526659 0.00395149 
4.88 0.71011852 0.706 17980 O.OG393872 
4.89 0.71100937 0.70708315 0.00392622 
4.9 0.71189072 0.70797672 0.00391400 
6.175 0.76550749 0.76533395 0.00017354 
7.45 0.77459730 0.77459385 0.00000345 
8.725 0.77583765 0.77583759 0.~~0006 

10 0.77600000 0.77600000 0 

TABLE 1% 

Comparison of the Numerical Pressures p, for the l, Solution of System (3.4) (3.3) 
on Grid (3.9) with the Exact Pressures p(x,) for System (3.1) (3.3) 

Xl P, Pi.Y,) Error 

0 0.38091760 0.38091760 
1.6 0.37719746 0.37719011 
3.2 0.33952653 0.33892231 
4.8 0.20396442 0.20124151 
4.81 0.20308040 0.20037833 
4.82 0.65206289 0.64774290 
4.83 0.65329352 0.64899092 
4.84 0.65451185 0.65022626 
4.85 0.65571798 0.65144902 
4.86 0.65691200 0.65265930 
4.87 0.65809399 0.65385719 
4.88 0.65926403 0.65504280 
4.89 0.66042220 0.65621620 
4.9 0.66156859 0.65737749 
6.175 0.73330850 0.73312771 
7.45 0.74557960 0.74557602 
8.725 0.74725262 0.74725256 

10 0.74747157 0.74747157 

0 
0.00000735 
O.OOQ60422 
0.00272291 
0.00270207 
0.00431999 
0.30430260 
0.00428559 
0.~426~96 
0.00425270 
0.00423680 
o.Oo422123 
O.OO4206OO 
0.00419110 
0.00018019 
O.QOooO358 
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The I, procedure was put to a more stringent test by solving problem (3.4), (3.3) 
on the grid consisting of 

3 large cells each of with 1.6 in (0,4.8), 

10 small cells each of width 0.01 in (4.8, 4.9), 

4 large cells each of width 1.275 in (4.9, lo), 

(3.9) 

for which the mesh length changes abruptly by a factor of 160 at x = 4.8 and by a 
factor of 127.5 at x=4.9. The num&ical densities pi are compared to the exact 
densities p(x,) in Table IVa. The numerical pressures pi are compared to the exact 
pressures p(xJ in Table IVb. The shock is located in the correct cell (4.81, 4.82), the 
numerical solution is nonoscillatory, the maximum density error is less than 0.6% 
and the maximum pressure error is less than 1.4%. 

The accuracy of the numerical solutions mentioned above in this section suggests 
that the numerical solution in the vicinity of the shock might be efficiently 
calculated by first solving the Euler equations globally on a coarse grid and then 
solving the Euler equations locally on a line grid imposed on the coarse-grid cell 
that contains the shock. This was done for several cases with the boundary condi- 
tions 

PO = Pleft > Pn = Pright 2 

uo = %rt > e. = cleft 

(3.10) 

and the initial guesses 

Pi = Pleft. 

Pi = Pright 9 

ei = cleft 

ei = eright 

for xi < 4.816, 

for xi > 4.816, (3.11) 

(PU), = Qy$ vxi, 
I 

where the subscript “left” (“right”) refers to the numerical value of a quantity at the 
left (right) boundary of the local grid. When the I, procedure was applied locally 
on the cell (3.75, 5) divided into 10 equal subintervals with boundary conditions 
obtained from the solution for the equally spaced grid with IZ = 8 on (0, lo), the 
shock in the final numerical solution was correctly positioned in the cell 
(4.75,4.875). The solution values obtained by applying the I1 procedure locally in 
(3.75, 5) coincided to 15 decimal digits with the results obtained globally on the 
grid (3.8) with the exception of the pi and e, at 4.75, which the “global” procedure 
had identified as being on the wrong branch of the solution. 

The cell (4.75,4.875) was divided into 10 finer subintervals each of length 0.0125 
and the Euler equations were solved on this grid on (4.75,4.875) with initial guesses 
(3.11). The I, procedure produced a solution with the shock correctly located in the 
interval (4.8125,4.825). This interval was in turn divided into 10 subintervals each 
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of length 0.00125 and the Euler equations were solved on this gri 
(4.8125,4.825) with initial guesses (3.10). The I, procedure again produced a 
tion with the shock located in the correct cell, namely (4.815,4.81625). The 
this last case are compared to the values of p(x,) in Table V. The shock is 
and the relative error is less than 0.5%. The 2, procedure has refined the p 
of the shock by a factor of lOO&the shock, originally known to be only in an 
interval of length 1.25, is now known to be in an interval of length 0.00125. 
the I, procedure seems to have an ability to refine the 
indefinitely, there is no point in carrying out further computations on a tin 
on (4.815, 4.81625) since the 0.5 % error in the boundary conditions passe 
from the coarsest grid will eventually make the ca~cn~atio~s produce in 
results. 

Finally, let us investigate the behavior of the E, procedure on grids wit 
changes in mesh length that are not near the shock, simn~ati~g the patchi 
grids. We will consider the following four grids: 

5 large cells each of width 1.5 - 0.25 * lo-’ on (0, 7.5 - 1.25 t IO-‘), 

1 small cell of width 1.25 * lo-‘on (7.5 - I.25 * 1 (3.12) 

2 large cells each of width 1.25 on (7.5, l(d) 

for r = 1,2, 3,4. The widths of the three types of cells in (3.12) are in t 
1.2 * IO’ - 0.2 : 1: 10’. When the I, procedure was started from the initial guesses 
(3.7) convergence to nonphysical solutions occurred. When the initial guesse 
pi were changed to the values of a linear function connecting the two bou 

.502 and p( 10) = 0.776, namely, 

pi = 0.502 + 0.0274x,, (3.13) 

TABLE V 

Comparison of the Local I, Solution p, of System (3.4), (3.10) 
with the Exact Solution p(x,) of System (3.1), (3.3) 

PL PW Error 

4.8125 0.31739039 0.31702901 
4.81375 0.31726850 0.31690749 
4.815 0.31714668 0.31678604 
4.81625 0.70351214 0.70018542 
4.8175 0.70363216 0.10030696 
4.81875 0.70375203 0.70042833 
4.82 0.70387174 0.70054954 
4.82125 0.70399129 0.70067059 
4.8225 0.70411069 0.70079148 
4.82375 0.70422992 0.70091225 
4.825 0.70434900 0.70103216 

0.00036138 
0.00036101 
~.~036~64 

O.OO332.520 
0.00332370 
O.C@33222@ 
0.00332070 
0.00331921 
c9.00331772 
0.00331624 
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TABLE VI 

Comparison of the I, Solution pi of System (3.4), (3.3) on Grid (3.12) 
with Y = 4 with the Exact Solution p(x,) of System (3.1), (3.3) 

XL P(XJ Error 

0 0.50200000 0.50200000 0 
1.499975 0.49904476 0.49904076 0.00000400 
2.99995 0.47 160924 0.47132962 0.00027962 
4.499925 0.67383402 0.34904594 0.32478808 
5.9999 0.76238443 0.76202453 0.00035990 
7.499875 0.77470599 0.77470313 0.00000286 
7.5 0.77470626 0.77470339 0.00000287 
8.75 0.77584496 0.77584490 0.00000006 

10 0.77600000 0.77600000 0 

the initial values of (pu), and e, remaining as in (3.7), convergence to physical solu- 
tions did occur for r = 1,2, 3,4. In all of these solutions, however, the shock in the 
solution produced by the I, procedure was off by one cell. The pi for r =4 (cell- 
width ratios of 12000: 1: 10000) are given in Table VI. The errors (except for the 
error at 4.499925) are less than 0.05% in spite of the extreme changes in mesh 
length. The pi, (pu),, and e, at x=7.5 and 8.75 for grid (3.12) coincide to 15 
decimal digits with the pi, (pu),, and ej of the 8-cell equally spaced grid. 

The numerical experiments mentioned in the above paragraph confirm that the 
I, procedure in its current form is sensitive to the initial guesses (cf. [S]). All of the 
other numerical experiments mentioned in this section were rerun with the linear 
initial pi of (3.13) replacing the discontinuous initial pi of (3.7) (for global problems 
on (0, 10)) and linear initial pi and ei that connect the boundary conditions replac- 
ing the discontinuous initial pi and ej of (3.11) (for local problems). In many cases, 
the I, procedure with these initial guesses produced numerical solutions in which 
the shock was correctly positioned; in the majority of cases, the shock was 
incorrectly located by a few cells (three or fewer except in one case when it was 
five); finally, in some cases, convergence did not occur. In all cases of convergence, 
the numerical solution was close to the physical solution and the numerical 
accuracy of the solution values was the same as that seen in the solutions in 
Tables IIILVI. 

4. DISCUSSION 

Bidiagonal schemes related to (3.4) have been proposed by MacCormack [IS] for 
compressible viscous flow and by Casier et al. [4] and Wornom [ 111 for Euler 
equations. In these papers, the steady-state solution is obtained by integration 
through natural time (time marching) rather than by solving the steady-state 
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system directly by Newton’s method. Once steady state is reached an 
derivatives vanish, the conservative bidiagonal scheme of [ 1 I ] and sche 
the present paper are identical for non-shock cases. The good 
bidiagonal schemes for purely subsonic, purely supersonic, unsh 
and shocked transonic Euler flows has been documented in [4, 
are not treated in the present paper, since they have three or fe 
four, physical boundary conditions and therefore result in rm 
systems (3.4). While the I, procedure can be used to solve ~ouoverdeter~~~e 
systems, it is more expensive than Newton’s method or time marching and is not 
to be recommended. 

The goal of the present paper is to investigate the numerics of the supersonic-- 
subsonic case, in which the system is overdetermined by the resence of the four 
boundary conditions (3.3). In [4] this case was not treated. 
sonic-subsonic problem was discretized as an overdetermined a 
the overdetermination was eliminated by arbitrarily omitting t 
tion on the shocked cell. Conservation of mass was enforced b 
before and after the shock. In the present paper, no such arbitrary omissions or 
modifications are permitted. Here, it is the algorit m itself, not the user, 
which equation to omit (always the momentum e 
the continuity equation). The principle of endi 
equations and unknowns is valid for physical systems that themselves are not over- 
determined. In the inherently overdetermined supersonic-subsonic case, however, it 
is not only acceptable to end up with an overdetermined discrete system, it is 
preferred. The question to ask is then not why the system should be overdeter~~~ 
but rather how the solution of the overdetermined syste should be defined. T 
usual tactic is to define the solution to be the set of depe ent variables that mim- 
mizes one of the Z, norms, 1 6p d 00, of the vector of (weighte residuals. The 
choice p = 1 is based on the fact that p = I concentrates all of the 
only one residual, the the residual of the momentum equation on the shocked ce 
(all other residuals are zero). The example of Section 3 of [S] illustrates the 
dangers of taking the well-trodden path of using the least-squares principle (p = 2), 
which spreads the error over many cells. 

fact that the I, procedure omits one equation from the system (3.4) 
es that it is not conservative. For the Euler system (3.4), the 

~~we~ghted absolute residuals of tire momentum equation on the sh 
given in Table VII for the data of Table III. It is seen. from t ata in this table 
that the residual tends to zero as h decreases (n increases). This result is true for 
the data of Tables IV-VI also. The interpretation for this behavior is as follows. 
The 1, procedure is esigned to to minimize the residual o e momentum equation 
on all other residuals being zero. he a~k~~e-~~go~iot jump 
con ion on the shocked cell is that the residual of t momentum equation on the 
shocked cell vanish. Thus, the I, procedure seeks to minimize the 

ugoniot condition on the shocked cell. For certain cases su 
Burgers’ equation with an interior shock present 
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TABLE VII 

Unweighted Absolute Residuals of the Momentum Equation on the Shocked Cell, 1 Y,~ 1 

n Shocked cell Absolute residual 1 riz 1 

4 (2.5, 5.0) 1.11669816 
8 (3.75, 5.0) 0.32297255 

16 (4.375, 5.0) 0.23960115 
32 (4.6875, 5.0) 0.09078541 

residual on the shocked cell actually vanishes. For the Euler results mentioned 
above, the residual is not zero but is close to zero and decreases in magnitude with 
h. The nonconservative I, procedure produces the most nearly conservative solution 
that can be obtained on the given grid without artificially altering terms in the 
discrete equations. 

The current algorithm for implementing the I, procedure, which is based on 
Newton’s method and the Barrodale-Roberts algorithm [ 1,2, 31 is much more 
expensive than standard algorithms (TVD, ENO, etc.), which require O(n) opera- 
tions. The Barrodale-Roberts algorithm, which requires storing and operating on a 
full matrix and ignores the quadridiagonal or block-bidiagonal structure of the 
systems representing Eqs. (2.7) and (3.4), is estimated to require not less than O(n”) 
and perhaps as many as 0(n’) operations [3, pp. 231-2361. Moreover, this number 
of operations must be done on each step of the Newton outer loop. The present I, 
procedure is not only expensive, it may also be the cause of the changes in the posi- 
tion of the numerical shock for different initial conditions mentioned at the end of 
Section 3. Development of a more refined I, procedure is a key to both the 
computational and the theoretical success of the I, strategy. One candidate is the 
I, procedure of [7], which is based on the I, algorithm of Seneta and Steiger [9; 3, 
pp. 237-2581 and unities the theoretical and numerical processes in one framework. 
The development of new I, procedures for the banded matrices that occur in fluid- 
flow problems will involve a redirection of effort in operations research, which has 
historically been oriented towards the full-matrix situation. To carry out an analysis 
for the singularly perturbed Burgers’ equation and the Euler equations similar to 
that in [7], tools for appropriate classes of quadridiagonal and block-bidiagonal 
matrices will have to be developed. The development of an analytical framework 
will allow one to answer fundamental questions such as whether the discrete 
solution is unique, what the domain of convergence is, and what the rate of 
convergence to the physically relevant solutions of the original problems (2.1) or 
(3.1) are. 

5. CONCLUSION 

The results presented here show that the I, procedure produces remarkably 
accurate numerical solutions of the l-dimensional Burgers’ equation and Euler 
equations on coarse grids, fine grids, and grids with abrupt changes in mesh length. 
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